3.598 \(\int (c x)^{5/2} (a+b x^2)^{3/2} \, dx\)

Optimal. Leaf size=329 \[ -\frac{4 a^{13/4} c^{5/2} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right ),\frac{1}{2}\right )}{65 b^{7/4} \sqrt{a+b x^2}}-\frac{8 a^3 c^2 \sqrt{c x} \sqrt{a+b x^2}}{65 b^{3/2} \left (\sqrt{a}+\sqrt{b} x\right )}+\frac{8 a^{13/4} c^{5/2} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{65 b^{7/4} \sqrt{a+b x^2}}+\frac{8 a^2 c (c x)^{3/2} \sqrt{a+b x^2}}{195 b}+\frac{2 (c x)^{7/2} \left (a+b x^2\right )^{3/2}}{13 c}+\frac{4 a (c x)^{7/2} \sqrt{a+b x^2}}{39 c} \]

[Out]

(8*a^2*c*(c*x)^(3/2)*Sqrt[a + b*x^2])/(195*b) + (4*a*(c*x)^(7/2)*Sqrt[a + b*x^2])/(39*c) - (8*a^3*c^2*Sqrt[c*x
]*Sqrt[a + b*x^2])/(65*b^(3/2)*(Sqrt[a] + Sqrt[b]*x)) + (2*(c*x)^(7/2)*(a + b*x^2)^(3/2))/(13*c) + (8*a^(13/4)
*c^(5/2)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqrt[c*x]
)/(a^(1/4)*Sqrt[c])], 1/2])/(65*b^(7/4)*Sqrt[a + b*x^2]) - (4*a^(13/4)*c^(5/2)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a +
 b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(65*b^(7/4)*
Sqrt[a + b*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.255973, antiderivative size = 329, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.316, Rules used = {279, 321, 329, 305, 220, 1196} \[ -\frac{8 a^3 c^2 \sqrt{c x} \sqrt{a+b x^2}}{65 b^{3/2} \left (\sqrt{a}+\sqrt{b} x\right )}-\frac{4 a^{13/4} c^{5/2} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{65 b^{7/4} \sqrt{a+b x^2}}+\frac{8 a^{13/4} c^{5/2} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{65 b^{7/4} \sqrt{a+b x^2}}+\frac{8 a^2 c (c x)^{3/2} \sqrt{a+b x^2}}{195 b}+\frac{2 (c x)^{7/2} \left (a+b x^2\right )^{3/2}}{13 c}+\frac{4 a (c x)^{7/2} \sqrt{a+b x^2}}{39 c} \]

Antiderivative was successfully verified.

[In]

Int[(c*x)^(5/2)*(a + b*x^2)^(3/2),x]

[Out]

(8*a^2*c*(c*x)^(3/2)*Sqrt[a + b*x^2])/(195*b) + (4*a*(c*x)^(7/2)*Sqrt[a + b*x^2])/(39*c) - (8*a^3*c^2*Sqrt[c*x
]*Sqrt[a + b*x^2])/(65*b^(3/2)*(Sqrt[a] + Sqrt[b]*x)) + (2*(c*x)^(7/2)*(a + b*x^2)^(3/2))/(13*c) + (8*a^(13/4)
*c^(5/2)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticE[2*ArcTan[(b^(1/4)*Sqrt[c*x]
)/(a^(1/4)*Sqrt[c])], 1/2])/(65*b^(7/4)*Sqrt[a + b*x^2]) - (4*a^(13/4)*c^(5/2)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a +
 b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(65*b^(7/4)*
Sqrt[a + b*x^2])

Rule 279

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
n*p + 1)), x] + Dist[(a*n*p)/(m + n*p + 1), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin{align*} \int (c x)^{5/2} \left (a+b x^2\right )^{3/2} \, dx &=\frac{2 (c x)^{7/2} \left (a+b x^2\right )^{3/2}}{13 c}+\frac{1}{13} (6 a) \int (c x)^{5/2} \sqrt{a+b x^2} \, dx\\ &=\frac{4 a (c x)^{7/2} \sqrt{a+b x^2}}{39 c}+\frac{2 (c x)^{7/2} \left (a+b x^2\right )^{3/2}}{13 c}+\frac{1}{39} \left (4 a^2\right ) \int \frac{(c x)^{5/2}}{\sqrt{a+b x^2}} \, dx\\ &=\frac{8 a^2 c (c x)^{3/2} \sqrt{a+b x^2}}{195 b}+\frac{4 a (c x)^{7/2} \sqrt{a+b x^2}}{39 c}+\frac{2 (c x)^{7/2} \left (a+b x^2\right )^{3/2}}{13 c}-\frac{\left (4 a^3 c^2\right ) \int \frac{\sqrt{c x}}{\sqrt{a+b x^2}} \, dx}{65 b}\\ &=\frac{8 a^2 c (c x)^{3/2} \sqrt{a+b x^2}}{195 b}+\frac{4 a (c x)^{7/2} \sqrt{a+b x^2}}{39 c}+\frac{2 (c x)^{7/2} \left (a+b x^2\right )^{3/2}}{13 c}-\frac{\left (8 a^3 c\right ) \operatorname{Subst}\left (\int \frac{x^2}{\sqrt{a+\frac{b x^4}{c^2}}} \, dx,x,\sqrt{c x}\right )}{65 b}\\ &=\frac{8 a^2 c (c x)^{3/2} \sqrt{a+b x^2}}{195 b}+\frac{4 a (c x)^{7/2} \sqrt{a+b x^2}}{39 c}+\frac{2 (c x)^{7/2} \left (a+b x^2\right )^{3/2}}{13 c}-\frac{\left (8 a^{7/2} c^2\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+\frac{b x^4}{c^2}}} \, dx,x,\sqrt{c x}\right )}{65 b^{3/2}}+\frac{\left (8 a^{7/2} c^2\right ) \operatorname{Subst}\left (\int \frac{1-\frac{\sqrt{b} x^2}{\sqrt{a} c}}{\sqrt{a+\frac{b x^4}{c^2}}} \, dx,x,\sqrt{c x}\right )}{65 b^{3/2}}\\ &=\frac{8 a^2 c (c x)^{3/2} \sqrt{a+b x^2}}{195 b}+\frac{4 a (c x)^{7/2} \sqrt{a+b x^2}}{39 c}-\frac{8 a^3 c^2 \sqrt{c x} \sqrt{a+b x^2}}{65 b^{3/2} \left (\sqrt{a}+\sqrt{b} x\right )}+\frac{2 (c x)^{7/2} \left (a+b x^2\right )^{3/2}}{13 c}+\frac{8 a^{13/4} c^{5/2} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{65 b^{7/4} \sqrt{a+b x^2}}-\frac{4 a^{13/4} c^{5/2} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{65 b^{7/4} \sqrt{a+b x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0621499, size = 89, normalized size = 0.27 \[ \frac{2 c (c x)^{3/2} \sqrt{a+b x^2} \left (\left (a+b x^2\right )^2 \sqrt{\frac{b x^2}{a}+1}-a^2 \, _2F_1\left (-\frac{3}{2},\frac{3}{4};\frac{7}{4};-\frac{b x^2}{a}\right )\right )}{13 b \sqrt{\frac{b x^2}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*x)^(5/2)*(a + b*x^2)^(3/2),x]

[Out]

(2*c*(c*x)^(3/2)*Sqrt[a + b*x^2]*((a + b*x^2)^2*Sqrt[1 + (b*x^2)/a] - a^2*Hypergeometric2F1[-3/2, 3/4, 7/4, -(
(b*x^2)/a)]))/(13*b*Sqrt[1 + (b*x^2)/a])

________________________________________________________________________________________

Maple [A]  time = 0.021, size = 232, normalized size = 0.7 \begin{align*} -{\frac{2\,{c}^{2}}{195\,{b}^{2}x}\sqrt{cx} \left ( -15\,{x}^{8}{b}^{4}-40\,{x}^{6}a{b}^{3}+12\,\sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{2}\sqrt{{\frac{-bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{-{\frac{bx}{\sqrt{-ab}}}}{\it EllipticE} \left ( \sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}},1/2\,\sqrt{2} \right ){a}^{4}-6\,\sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{2}\sqrt{{\frac{-bx+\sqrt{-ab}}{\sqrt{-ab}}}}\sqrt{-{\frac{bx}{\sqrt{-ab}}}}{\it EllipticF} \left ( \sqrt{{\frac{bx+\sqrt{-ab}}{\sqrt{-ab}}}},1/2\,\sqrt{2} \right ){a}^{4}-29\,{x}^{4}{a}^{2}{b}^{2}-4\,{x}^{2}{a}^{3}b \right ){\frac{1}{\sqrt{b{x}^{2}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^(5/2)*(b*x^2+a)^(3/2),x)

[Out]

-2/195/x*c^2*(c*x)^(1/2)/(b*x^2+a)^(1/2)/b^2*(-15*x^8*b^4-40*x^6*a*b^3+12*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1
/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticE(((b*x+(-a*b)^(1/2))/(
-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a^4-6*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a
*b)^(1/2))^(1/2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a^4-
29*x^4*a^2*b^2-4*x^2*a^3*b)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b x^{2} + a\right )}^{\frac{3}{2}} \left (c x\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(5/2)*(b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^(3/2)*(c*x)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (b c^{2} x^{4} + a c^{2} x^{2}\right )} \sqrt{b x^{2} + a} \sqrt{c x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(5/2)*(b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

integral((b*c^2*x^4 + a*c^2*x^2)*sqrt(b*x^2 + a)*sqrt(c*x), x)

________________________________________________________________________________________

Sympy [C]  time = 91.753, size = 46, normalized size = 0.14 \begin{align*} \frac{a^{\frac{3}{2}} c^{\frac{5}{2}} x^{\frac{7}{2}} \Gamma \left (\frac{7}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{3}{2}, \frac{7}{4} \\ \frac{11}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 \Gamma \left (\frac{11}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)**(5/2)*(b*x**2+a)**(3/2),x)

[Out]

a**(3/2)*c**(5/2)*x**(7/2)*gamma(7/4)*hyper((-3/2, 7/4), (11/4,), b*x**2*exp_polar(I*pi)/a)/(2*gamma(11/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b x^{2} + a\right )}^{\frac{3}{2}} \left (c x\right )^{\frac{5}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(5/2)*(b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^(3/2)*(c*x)^(5/2), x)